Linear Algebra, Winter 2022
List 7
More complex numbers, intro to polynomials
164. Re-write $\left(r e^{i \theta}\right)^{3}$ in the form $_e e^{i} . r^{3} e^{3 \theta i}$

$\cos (\theta)+i \sin (\theta)$

165. Re-write $10 e^{(\pi / 4) i}$ in the form $\ldots+\ldots i$.
$10\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=10\left(\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right)=5 \sqrt{2}+5 \sqrt{2} i$
166. Re-write $\left(2 e^{7 i}\right)^{10}$ in the form \qquad $+$ \qquad i.

$$
1024 \cos (70)+1024 \sin (70) i \text { or } 648.52+792.46 i
$$

(Note: $\cos (70) \approx 0.633$ is not the same as $\cos \left(70^{\circ}\right) \approx 0.342$.)
167. Re-write $-\sqrt{5}+\sqrt{15} i$ in the form \qquad $e —^{i}$. Using Task 158(b), $\sqrt{20} e^{(3 \pi / 4) i}$
168. If z is a complex number with $|z|=4$, what is $\left|z^{2}\right|$? 16
169. If z is a complex number with $\arg (z)=5 \pi / 6$, what is $\arg \left(z^{2}\right)$? The angle is $\frac{5 \pi}{3}$, but arguments are usually given in the interval $(-\pi, \pi]$, so this is $\frac{-\pi}{3}$.
170. If w is a complex number with $\arg (w)=\pi / 10$, what is $\arg \left(w^{446}\right) ? \frac{3 \pi}{5}$
171. Write $\left(\frac{\sqrt{3}-i}{1+i}\right)^{6}$ in the form $a+b i . \boxed{-8 i}$
(Hint: $\sqrt{3}-i=2 e^{(-\pi / 6) i}$ and $\left.1+i=\sqrt{2} e^{(\pi / 4) i}.\right)$
Rectangular form: $a+b i$, or $a+i b$, or $b i+a$, or similar.
Polar form: $r(\cos \theta+i \sin \theta)$, or $r \cos (\theta)+r \sin (\theta) i$, or similar. Requires $r \geq 0$.
Exponential form: $r e^{\theta i}$, or $r e^{i \theta}$.
172. Write the following in rectangular form.
(a) $e^{\frac{\pi}{4} i} \frac{1}{\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i}$ or $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$
(b) $2 e^{i \pi / 6} \sqrt{3}+i$
(c) $5 e^{-i \pi / 3} \frac{5}{2}-\frac{5 \sqrt{3}}{2} i$
(d) $-8 e^{\pi i} 8$ or $8+0 i$
(e) $\sqrt{9}+\sqrt{-9} 3+3 i$
173. For $z=1+i$ and $w=3 e^{(\pi / 4) i}$, calculate the following. For complex values, you may give the answer in rectangular or polar or exponential form (your choice).
(a) $|w| 3$
(b) $| z w | \longdiv { 3 \sqrt { 2 } }$
(c) $|z / w| \sqrt{2} / 3$
(d) $-w 3 e^{(5 \pi / 4) i}$
(e) $(\bar{w})^{2}-9 i$ or $9 e^{(-\pi / 2) i}$
(f) $z w 3 \sqrt{2} i$ or $3 \sqrt{2} e^{(\pi / 2) i}$
(g) $z+w\left(1+\frac{\sqrt{3}}{2}\right)+\left(1+\frac{\sqrt{3}}{2}\right) i$ or $(3+\sqrt{2}) e^{(\pi / 4) i}$
(h) $z+z^{2} 1+3 i$
(i) $z / w \sqrt{2} / 3$
(j) $w / z 3 / \sqrt{2}$
174. Which of the points A-E below could be $z+w$? D

175. Which of the points A-E above could be $z w$?
176. Write $\left(5 e^{70^{\circ} i}\right)\left(2 e^{-40^{\circ} i}\right)$ in exponential form and polar form and rectangular form. Exp: $10 e^{30^{\circ} i}$ Polar: $10 \cos \left(30^{\circ} i\right)+10 \sin \left(30^{\circ} i\right)$ Rect: $5 \sqrt{3}+5 i$
177. Write $(3+2 i)(3-2 i)$ in rectangular form. 13
in 178. Which of the following is equal to i^{i} ? (C)
(A) $\frac{i}{\sqrt{2}}$
(B) $\ln (2)+i$
(C) $\frac{1}{\sqrt{e^{\pi}}}$
(D) $e^{\sqrt{3}}$
(E) $2 \pi i$
(F) $\frac{\ln (\pi)}{2}$
179. Which of the following shows all complex numbers for which $|z|=1$?
(A)

(B)

(C)

(D)

180. Which of the images from \#179 shows all complex numbers with $\arg (z)=1$? (D)
181. Which of the images from \#179 shows all complex numbers for which $z+i$ is real (meaning that the imaginary part of $z+i$ is zero)? (A)
2 182. Which of the following shows all complex numbers for which $\frac{1}{1+z^{2}}$ is real? (B)
(A)

(B)

(C)

(D)

The conjugate of the complex number z, written as \bar{z} and spoken as " Z bar", is the reflection of z over the real-axis. In formulas,

$$
\overline{a+b i}=a-b i \quad \text { and } \quad \overline{r e^{\theta i}}=r e^{-\theta i}
$$

if a, b, r, θ are real numbers.
183. Given that $\bar{z}=5+2 i$ and $\bar{w}=3-6 i$, calculate $\overline{w+z} \cdot 8-4 i$
184. (a) For $z=\frac{\sqrt{7}}{2}+\frac{\sqrt{11}}{3} i$, calculate $z+\bar{z} \cdot \sqrt{7}$
(b) For $z=31+\frac{\sqrt{3+\pi}}{\log (4)-12} i$, calculate $z+\bar{z}$. $\sqrt{6} 2$
(c) For $z=9 e^{(\pi / 8) i}$, calculate $z \cdot \bar{z} .81$
(d) For $z=\sqrt{26} e^{\left(8 e^{3}-\sqrt{5}\right) i}$, calculate $z \cdot \bar{z} .26$
185. How are $|z|$ and $|\bar{z}|$ related? equal: $|\bar{z}|=|z| \quad$ How $\operatorname{are} \arg (z)$ and $\arg (\bar{z})$ related? negatives: $\arg \bar{z}=-\arg z$
186. (a) Give an example of a number z for which $z+\bar{z}=-12$, or explain why no such z can exist. $z=-6+b i$ for any real number b.
(b) Give an example of a number z for which $z \cdot \bar{z}=-12$, or explain why no such z can exist. Can't exist because $z \cdot \bar{z}=|z|^{2}$ is always positive.

