## Linear Algebra, Winter 2022

## List 7

More complex numbers, intro to polynomials

164. Re-write  $(r e^{i\theta})^3$  in the form  $e^{-i}$ .  $r^3 e^{3\theta i}$ 

$$e^{\theta i} = \cos(\theta) + i\sin(\theta)$$

165. Re-write  $10e^{(\pi/4)i}$  in the form \_\_\_\_\_ + \_\_\_\_i.  $10(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}) = 10(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}) = 5\sqrt{2} + 5\sqrt{2}i$ 

166. Re-write  $(2e^{7i})^{10}$  in the form \_\_\_\_\_+ \_\_\_\_i.

 $1024\cos(70) + 1024\sin(70)i$  or 648.52 + 792.46i

(Note:  $\cos(70) \approx 0.633$  is **not** the same as  $\cos(70^\circ) \approx 0.342$ .)

- 167. Re-write  $-\sqrt{5} + \sqrt{15}i$  in the form  $e^{-i}$ . Using **Task 158(b)**,  $\sqrt{20}e^{(3\pi/4)i}$
- 168. If z is a complex number with |z| = 4, what is  $|z^2|$ ? 16
- 169. If z is a complex number with  $\arg(z) = 5\pi/6$ , what is  $\arg(z^2)$ ? The angle is  $\frac{5\pi}{3}$ , but arguments are usually given in the interval  $(-\pi, \pi]$ , so this is  $\boxed{\frac{-\pi}{3}}$ .

170. If w is a complex number with  $\arg(w) = \pi/10$ , what is  $\arg(w^{446})$ ?  $\frac{3\pi}{5}$ 

171. Write 
$$\left(\frac{\sqrt{3}-i}{1+i}\right)^6$$
 in the form  $a+bi$ .   
(Hint:  $\sqrt{3}-i=2e^{(-\pi/6)i}$  and  $1+i=\sqrt{2}e^{(\pi/4)i}$ .)

**Rectangular form:** a + bi, or a + ib, or bi + a, or similar. **Polar form:**  $r(\cos \theta + i \sin \theta)$ , or  $r \cos(\theta) + r \sin(\theta)i$ , or similar. Requires  $r \ge 0$ . **Exponential form:**  $r e^{\theta i}$ , or  $r e^{i\theta}$ .

172. Write the following in rectangular form.

(a) 
$$e^{\frac{\pi}{4}i} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}i}$$
 or  $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$   
(b)  $2e^{i\pi/6} \sqrt{3} + i$   
(c)  $5e^{-i\pi/3} \frac{5}{2} - \frac{5\sqrt{3}}{2}i$   
(d)  $-8e^{\pi i}$  8 or  $8 + 0i$   
(e)  $\sqrt{9} + \sqrt{-9}$   $3 + 3i$ 

173. For z = 1 + i and  $w = 3e^{(\pi/4)i}$ , calculate the following. For complex values, you may give the answer in rectangular or polar or exponential form (your choice).



174. Which of the points A-E below could be z + w?



- 175. Which of the points A-E above could be zw? B
- 176. Write  $(5e^{70^{\circ}i})(2e^{-40^{\circ}i})$  in exponential form and polar form and rectangular form. Exp:  $10e^{30^{\circ}i}$  Polar:  $10\cos(30^{\circ}i) + 10\sin(30^{\circ}i)$  Rect:  $5\sqrt{3} + 5i$
- 177. Write (3+2i)(3-2i) in rectangular form. 13
- $\approx 178$ . Which of the following is equal to  $i^i$ ? (C)

(A) 
$$\frac{i}{\sqrt{2}}$$
 (B)  $\ln(2) + i$  (C)  $\frac{1}{\sqrt{e^{\pi}}}$  (D)  $e^{\sqrt{3}}$  (E)  $2\pi i$  (F)  $\frac{\ln(\pi)}{2}$ 

179. Which of the following shows all complex numbers for which |z| = 1? (B)



- 180. Which of the images from #179 shows all complex numbers with  $\arg(z) = 1$ ?
- 181. Which of the images from #179 shows all complex numbers for which z + i is real (meaning that the imaginary part of z + i is zero)? (A)
- $\approx 182$ . Which of the following shows all complex numbers for which  $\frac{1}{1+z^2}$  is real?



The **conjugate** of the complex number z, written as  $\overline{z}$  and spoken as "Z bar", is the reflection of z over the real-axis. In formulas,

 $\overline{a+bi} = a-bi$  and  $\overline{re^{\theta i}} = re^{-\theta i}$ 

if  $a, b, r, \theta$  are real numbers.

183. Given that  $\overline{z} = 5 + 2i$  and  $\overline{w} = 3 - 6i$ , calculate  $\overline{w + z}$ . 8 - 4i

184. (a) For 
$$z = \frac{\sqrt{7}}{2} + \frac{\sqrt{11}}{3}i$$
, calculate  $z + \overline{z}$ .  $\sqrt{7}$   
(b) For  $z = 31 + \frac{\sqrt{3 + \pi}}{\log(4) - 12}i$ , calculate  $z + \overline{z}$ .  $\sqrt{62}$   
(c) For  $z = 9e^{(\pi/8)i}$ , calculate  $z \cdot \overline{z}$ . 81  
(d) For  $z = \sqrt{26}e^{(8e^3 - \sqrt{5})i}$ , calculate  $z \cdot \overline{z}$ . 26  
185. How are  $|z|$  and  $|\overline{z}|$  related? equal:  $|\overline{z}| = |z|$  How are argu

- 185. How are |z| and  $|\overline{z}|$  related? equal:  $|\overline{z}| = |z|$  How are  $\arg(z)$  and  $\arg(\overline{z})$  related? negatives:  $\arg \overline{z} = -\arg z$
- 186. (a) Give an example of a number z for which  $z + \overline{z} = -12$ , or explain why no such z can exist. z = -6 + bi for any real number b.
  - (b) Give an example of a number z for which  $z \cdot \overline{z} = -12$ , or explain why no such z can exist. Can't exist because  $z \cdot \overline{z} = |z|^2$  is always positive.